P-27

(POLYFLUOROORGANOXYALKYL)TRIALKOXYSILANES

M. G. Voronkov, N. F. Chernov and O. N. Florensova

Institute of Organic Chemistry, Siberian Division, Ac. Sci. USSR, 1 Favorsky Street, 664033 Irkutsk (U.S.S.R.)

Fluorine-containing organosilicon monomers and polymers are of great importance for manufacturing anti-adhesive hydrophobic coatings, heat resistant lubricants, etc.

We have worked out a process for manufacturing a new class of polyfluoroorganosilicon compounds, (polyfluoroorganoxy-alkyl)trialkoxysilanes. (Polyfluorophenoxyalkyl)trialkoxysilanes are synthesized by the reaction of (haloalkyl)trialkoxy-silanes with alkali polyfluorophenoxides in a medium of aromatic hydrocarbons and dimethylsulfoxide at 80-90°C:

$$Ar_{F}OM + Cl(CH_{2})_{n}Si(OR)_{3} \longrightarrow Ar_{F}O(CH_{2})_{n}Si(OR)_{3} + MCl$$
 $M = Na, K; Ar_{F} = C_{6}F_{5}, C_{6}F_{4}OMe, C_{6}F_{4}Cl, C_{6}F_{3}Cl_{2}, C_{6}F_{4}H;$
 $n = 1, 3; R = Me, Et$

The reaction of (haloalkyl)trialkoxysilanes with polyfluorinated alkoxides is carried out in a similar way. This reaction, however, is accompanied by some side-processes due to which the yield of (polyfluoroalkoxyalkyl)trialkoxysilanes does not exceed 20%. Besides, the products of transetherification and Si-C bond cleavage are formed. The reaction of (polyfluoroorganoxyalkyl)trialkoxysilanes with triethanolamine leads to the corresponding 1-substituted silatranes, R_FO(CH₂) Si(OCH₂CH₂) N (I) with R_F = C₆F₅, C₆F₄Cl, C₆F₃Cl₂, CH₂CF₂CF₂H, CH₂(CF₂CF₂)₂H, CH₂(CF₂)₃CF₃. The toxicity of (I) ranges within LD₅₀ = 16-900 mg/kg. Some of these compounds display a bacteriostatic activity with respect to Staphylococcus aureus.